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Abstract
Ottr solar systenx provides a plethora of exatnples of chaotic motion. The giant planets in
our solar system are chaotic, as are the inner planets'(independently). In extretne cases,
chaos can disrupt some orbital configurcttions, resulting in the loss of a planet, The spin
axes of planets may also evolve chaotically. Despite the variety and complexity of
applications, we can introduce many of the concepts in solar systerrl dynamics using the
pendtilum: phase space structure, periodic motion, and stability.

The physical basis of chaos in the solar system is now better
understood: in all cases investigated so far, chaotic orbits result from
overlapping resonances.

A series of remarkable features in the asteroid belt vividly illustrates
the importance of dynamical chaos in the solar system. The distribution of
semi-major axes of asteroid orbits contains a number of distinct gaps. These
are called Kirkwood gaps, in honor of Daniel Kirkwood, who first identified
them and noted that they occur at locations where the orbital period, z,
which depends on the semi-major axis, would be of the forrn @/q)71, where
zv is the orbital period of Jupiter and p and q are integers. The paper that
ignited the modern era of work on the Kirkwood problem was Jack
wisdom's (1982) - first contribution to the study of the 3:1 mean-motion
resonance at a = 2.50 AU. His startling results showed that an orbit at this
resonance could remain quiescent, with a low eccentricity, e < 0:1, for more
than 100,000 years, but also showing occasjonal surges lasting for about
10,000 years that would lift to a maximum value of about 0.35. such a value
is just sufficient to allow crossing of Mars' orbit, resulting in an eventual
collision or a close encounter.
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Further afield, about one new "short-period" comet is discovered
each year. They are believed to come from the "Kuiper Belt,, (at 40 AU or
more) via chaotic orbits produced by mean-motion and secular resonances
with Neptune. Finally, the planetary system itself is not immune fiom chaos.
For. example, Mercury, in l0l2 years, may suffer a close encounter with
venus or plunge into the sun. In the outer solar system, three-body
resonances have been identified as a source of chaos, but on an even longer
time scale of 10e times the age of the solar system.

The first striking exampre of chaotic behavior in the solar system
was given by the chaotic tumbling of Hyperton, a small satellite of saturn
whose strange rotational behavior was detected during the encounter of the
Voyager spacecraft with Saturn.

The equations of motion for the orientation of a satellite S orbiting
around a planet P on a fixed elliptical orbit of semi-maior axis u und
eccentricity e (Figure 1) are given by the Hamiltonian:

H = + iT(ft)' cos2(x -,(t))
(i)
where r(r) is the distance from the planet to the satellite, x gives the

d
orientation of the satellite with respect to a fixed direction, ):7t i, it,
conjugate variable, Eis the true anomaly of the satellite, and A < B < c are
the principal inertia moments of the satellite

when expanding the Hamiltonian with respect to eccentricity (e),
which is supposed to be small, and retaining only the first order terms in
eccentricity, one obtains:

y' d ^/ , (r€r
H = i - 1 cosz(x - t + |L"os(2x 

_ t) _7cos(2.r _ 3t)],

z(n _ e)
u--

2C
(2)

As a result of the transition between librational motion and rotational
satellite motion, smail chaotic zones appear. when perturbation size !e
increases, resonant zones corresponding to the various possible resonant
terms cos 2(x-t), cos (2x-t), cos (2x-3t) will overlap, giving rise to large-
scale chaotic motion.
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This is the case for Hyperion, where !e = 0,039. The resulting effect
is that the rotational motion of Hyperion is not regular, and it becomes
impossible to adjust any periodic or quasi-periodic model to its light curve.

They briefly recall a mathematicai model introduced in (celletti,
1990) to describe the "spin-orbit" interaction in celestial Mechanics. Let s
be a tri-axial ellipsoidal satellite orbiting around a central planet p
(Figurel). Let T,"u and z.o, be the periods of revolution of the satellite
around P and the period of rotation about an intelnal spin-axis. A p:q spin-
orbit resonance occurs whenever:

Tr", /Tro,= p / e, p,q e N,q *0.
The equation of motion may be derived from the standard Euler's

equations for a rigid body. In normalized units (i.e. assuming that the mean
motion is one, 2a / Tr"u = 1) we obtain:

#.'(;)' sin(2x - 2v) = o, u =U# .

(3)
We investigate numerically the stability of the periodic orbits. We denote by
a*(plq) the value of the perturbing parameter at which transition occurs.

The plot of z (p/q) (Figure 2) shows that for 1ow eccentricity values
there is only a marked peak corresponding to the 1:1 commensurability
(occurring when the periods of revolution and rotation are the same).
Increasing the eccentricity, other resonances appear. Indeed, the 3:2
resonance can be observed at eccentricities larger than 0.01.

Prof. Damgov introduces a heuristic model for the discrete
distribution of Solar system planets and the satellites' mean distances from
the primaries.

Herewith, as a general model we take a periodical motion, that is the
rotation of a charge at which an electromagnetic wave falls along the x-axis.

The charge motion equation is

i + 2$* + aix = €E * sin(vr - kx) .
(4)

tr
where " x is the x-axis electrical field component and k is the wave
modulus.

The solution of Eq. (10), describing a linear oscillator under wave
action, is written in the form of a quasi-harmonic function

x(t) - asin(cor + cr).
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where a(t)

O=V/N
integer.

and alt) are the slowly changing amplitude and phase,

is the charge periodic motion frequency, and N =I,2,3,... is an

The examination of the stability solutions reveals that the stable

oscillations amplitude a satisfies condition 
J ,(ka)=0 .

Hence, the stationary charge oscillations can be realized for
amplitudes a;, belonging to a strictly defined set of amplitude values. The
al values are determined by the Bessel function extremes, and may be

t.^
presented u, *o, = JNi, where ,/rv,; 1s the 1/-th order Besset tuncUon #^=:++

argument value kai at the i-th extremum point. The Solar system planets,
mean distances are presented on Table 1.

The unsolved problems in solar system chaotic dynamics are many.
As yet, we have no relation for secondary resonances, where ejection time is
a function of the Lyapunov time. unlike the outer planets, the source of
inner planets chaos has not been convincingly established.
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Fig. 1: The spin-orbit geometry.
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Fig. 5: Left panel: plot of ! *(p/q) vs. p/q for the frequencies listed in
the text; right panel: plot of the CSI !(p/q) vs. p/q for the same frequencies
as in the left panel. a) e = 0.001, b) e = 0.01, c) e = 0.1.
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Planets in the Solar
system

Data from direct astronomical
measurements of planet
distances from the Sun

(Allen, 1973) A.U.

Computed planet'
distances using

Equation (65) of the
"Oscillator-wave"

model
i ali

Mercury
Venus
Earth
Mars
Asteroids
Jupiter
Saturn
Chiron
(Collewll's objects)
Uranus
Neptune
Fluto

1 0.392
3 0.723
s 1.000
9 1,530
19 2.824
31 5.132
71 9.474
104 13.689

r47 19.180
232 30.035
307 39.598

0.39
0.72
1.00
1.52

2.78
5.2
9.s5
73.7r

19.1 8

30.03
39.67

Tab. 1: Mean planet distances in the Solar.system

IIflKOtr IroAXoAr4 frpn MOAEJTHOTO r43CJrEIBAHE HA
XA O T}IqHI4TE flB JIF.ItVIfl B C IbHTIE B ATA CII C TEMA

Kocmaduu llleilpemcrcu
Irlucmumym sa KocuuuecKu uscnedeauun - EAH

PesrcN{e

Hanara cJIbHqeBa cvareMa rrpeAcraB.rr MHolKecrBo or npr{Mepr4 3a
xaorl4qHu ABvI>KeHlafl' furaurcxzre nnaHerl,I, KaKTo rr BbrperxHrrre rrJraHerrz
ca rroABnacrHH Ha xaoca. B ssrou cnyqav xaocsT Molr(e Aa pa3pyrlz H.srofi
op6utannu xonQzryparlr4r4, BoAefir<z Ao sary6a Ha nJraHera. ocra na
BbpreHe Ha rIJIaHerI4Te Mo)Ke cbrrlo Aa eBonrovpa xaorrrrrHo. Hegae[cui\ao
or pasHoo6pa3l,Iero Ir cJloxHocrra Ha xaorI4rIHpITe .{BJIeHI4I, Hr4e Mo)r(eM Aa
NPEACTABIIM MHOIO OT KOHUENqIII,ITE HA ,IIT4HAMI4KATA HA CJIbHqEBATA
cl'IcreMa aslorssafiKr.r MaxaJro: crpyrryp ura Ha (f aaonoro IlpocrpaHcrBo,
nepr4ollzrrHo ABmKeHr4e z cra6zrHocr.
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