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Abstract
Our solar system provides a plethora of examples of chaotic motion. The giant planets in
our solar system are chaotic, as are the inner planets ( independently), In extreme cuses,
chaos can disrupt some orbital configurations, resulting in the loss of a planet. The spin
axes of planets may also evolve chaotically. Despite the variety and complexity of
applications, we can introduce many of the concepls in solar system dynamics using the
pendulum: phase space structure, periodic motion, and stability.

The physical basis of chaos in the solar system is now better
understood: in all cases investigated so far, chaotic orbits result from
overlapping resonances.

A series of remarkable features in the asteroid belt vividly illustrates
the importance of dynamical chaos in the solar system. The distribution of
semi-major axcs of asteroid orbits contains a number of distinct gaps. These
are called Kirkwood gaps, in honor of Daniel Kirkwood, who first identified
thern and noted that they occur at locations where the orbital period, 7,
which depends on the semi-major axis, would be of the form {p/g)T; , where
Ty is the orbital period of Jupiter and p and g are integers. The paper that
ignited the modern era of work on the Kirkwood problem was Jack
Wisdom's (1982) - first contribution to the study of the 3:1 mean-motion
resonance at a = 2.50 AU. His startling results showed that an orbit at this
resonance could remain quiescent, with a low eccentricity, e < 0:1, for more
than 100,000 years, but also showing occasional surges lasting for about
10,000 years that would lift to a maximum value of about 0.35. Such a value
1s just sufficient to allow crossing of Mars' orbit, resulting in an eventual
cotlision or a close encounter,
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Further aficld, about one new “short-period” comet is discovered
each year, They are believed to come from the “Kuiper Belt” (at 40 AU or
more} via chaotic orbits produced by mean-motion and secular resonances
with Nepture. Finally, the planetary system itself is not immune from chaos,
For. cxample, Mercury, in 10" years, may suffer a close encounter with
Venus or plunge into the Sun. In the outer solar system, three-body
resonances have been identified as a source of chaos, but on an even longer
time scale of 10° times the age of the solar system.

The first striking example of chaotic behavior in the solar sysiem
was given by the chaotic tumbling of Hyperion, a small satellitc of Saturn
whose strange rotational behavior was detected during the encounter of the
Voyager spacecraft with Saturn.

The cquations of motion for the oricntation of a satellite S orbiting
around a planct P on a fixed elliptical orbit of semi-major axis a and
eccentricity e (Figure 1) are given by the Hamiltonian:
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where r{f) is the distance from the planet to the satellite, x gives the

d

orientation of the satellite with respect to a fixed direction, % dat™ is its
conjugate variable, !'is the true anomaly of the satellite, and A < B < C are
the principal inertia moments of the satellite

When expanding the Hamiltonian with respect to cceentricity (e),
which is supposed to be small, and retaining only the first order terms in

eccentricity, one obtains:
2
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As a result of the transition between librational motion and rotational
satellite motion, small chaotic zones appear. When perturbation size Ce
increases, resonant zones corresponding to the various possible resonant
terms cos 2(x-t), cos (2x-1), cos (2x-3t) will overlap, giving rise to large-
scale chaotic motion.
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This is the casc for Hyperion, where Oc = 0,039. The resulting effect
1s that the rotational motion of Hyperion is not regular, and it becomes
impossible to adjust any periodic or quasi-periodic model to its [ight curve.

They briefly recall a mathematical model introduced in (Celletti,
1990) to describe the “spin—orbit™ interaction in Celestial Mechanics. Let S
be a tri-axial ellipsoidal satellite orbiting around a central planet P
{Figurcl). Let T, and T, be the periods of revolution of the satellite
around P and the peried of rotation about an internal spin-axis. A p:g spin-
orbit resonance occurs whenever:

L, /T,=plq, p,geN,q+0.

The equation of motion may be derived from the standard Euler’s
equations for a rigid body, In normalized units (i.e. assuming that the mean

motion is one, 2(1/ Ty = 1) we obtain:

d’x {1)3 ” _3(B-A)

0 + £ . sin{2x—-2v)=0,e= C 3

We investigate numerically the stability of the periodic orbits. We denote by
L *{p/q) the value of the perturbing parameter at which transition occurs.

The plot of C (p/q) (Figure 2) shows that for low eccentricity values
there is only a marked peak corresponding to the 1:1 commensurability
{occurring when the periods of revolution and rotation are the same).
Increasing the eccentricity, other resonances appear. Indecd, the 3:2
resonance can be observed at eccentricities larger than 0.01.

Prof. Damgov introduces a heuristic model for the discrete
distribution of Solar system planets and the satellites’ mean distances from
the primaries.

Herewith, as a general model we take a periodical motion, that is the
rotation of a charge at which an electromagnetic wave falls along the x-axis.

The charge motion equation is

%+ 2B+ 02x = ek sin(vt — kx) ,
4

where Ex is the x-axis electrical field component and & is the wave
modulus.

The solution of Eq. (10}, describing a linear oscillator under wave
action, is written in the form of a quasi-harmonic function

x(1) = asin{r + ) i
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where afz) and UL are the slowly changing amplitude and phase,

W=V/N is the charge periodic motion frequency, and N =1,2,3,... is an
integer.
The examination of the stability solutions reveals that the stable

- . o (ka)=0
oscillations amplitude « satisfies condition N( ) .
Heace, the stationary charge oscillations can be realized for

amplitudes i, belonging to a strictly defined set of amplitude values. The

% values are determined by the Bessel function cxtremes, and may be

o du
T

ka; = -}NJ', where /N is the N-th order Bessel function -

argument value ka, at the i-th extremum point. The Solar system planets’
mean distances are presented on Table 1.

The unsolved problems in solar system chaotic dynamics are many.
As yet, we have no relation for secondary resonances, where ejection time is
a function of the Lyapunov time. Unlike the outer planets, the source of
inner planets chaos has not been convinein gly established.

presented as
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Fig. 1: The spin-orbit geometry.
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Fig. 5: Left panel: plot of C*(p/q) vs. p/q for the frequencics listed in
the text; right panel: plot of the CSI O{p/g) vs. p/q for the same frequencies

as in the left panel. a) c = 0.001,b) e =0.01,¢c) e =0.1.
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Planets in the Solar  Data from direct astronomical ~ Computed planet

system measurements of planet distances using
distances from the Sun Equation (65} of the
{Allen, 1973) A.U. “Oscillator-wave”
model
I al]

Mercury 0.39 1 0.392
Venus 0.72 3 0.723
Earth 1.00 5 1.000
Mars 1.52 9 1.530
Asterords 278 19 2.824
Jupiter 5.2 37 5.132
Saturn 9.55 71 9.474
Chiron 13.71 104 13.689
(Collewll’s objects)
Uranus - 19.18 147 19.180
Neptune 30.03 ' 232 30.035
Pluto 39.67 307 39.598

Tab. 1. Mean planet distances in the Solar system

HAKOHU HOAXO U ITPN MOAEJHOTO U3CJIEABAHE HA
XAOTHYHUTE ABJEHUS B CIBHUEBATA CUCTEMA

Kocmaoun Hletipemcxu
Hucmumym 3a Kocmuuecku uscnedeanus — BAH

Pestome

Hamarta cnpRYeBa cHCTeMa IpeicTaBs MHOMKECTBO OT UPHMEPH 3a
XaOTHYHU HBMKEHUA. [ MFaHTCKUTE INAHETH, KAKTC ¥ BBTPEUIHATE IIIAHETH
ca IICABIACTHY Ha Xaoca. B HAKoM chaydan XaoChT MOXKE Jig pa3pyIluH HIKoH
opbutanny xoHQUrypauuy, Bopelikn no 3aryGa Ha manera. Octa Ha
BBPTEHE HA IIIAHETHTE MOXE CBIO A2 €BONIOMpPA Xa0THUHO. HezaBHCHMO
OT pasHoo0pasHETo U CIOXKHOCTTA HA XGOTUYHHUTE ABICHHA, HHE MOXEM /4
ONPEACTaBUM MHOI'O OT KCHUEINIMUTE Ha AMHaMUKaTa Ha CIbHYCBATA
CHCTCMa M3NON3BadKkK Maxano: CrpykTypata Ha $HasoBOTO IIPOCTPAHCTRO,
NEPHOJ/MYHO OABHMEHUE K CT&6HJTHOCT.
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